
Superconducting pumping of nanomechanical vibrations

Gustav Sonne and Robert I. Shekhter
Department of Physics, University of Gothenburg, SE-412 96 Göteborg, Sweden

Leonid Y. Gorelik*
Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Sergei I. Kulinich
Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

and B.I. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 611 03 Kharkov, Ukraine

Mats Jonson
Department of Physics, University of Gothenburg, SE-412 96 Göteborg, Sweden and School of Engineering and Physical Sciences,

Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
�Received 20 August 2008; published 2 October 2008�

We demonstrate that a supercurrent can pump energy from a battery that provides a voltage bias into
nanomechanical vibrations. Using a device containing a nanowire Josephson weak link as an example we show
that a nonlinear coupling between the supercurrent and a static external magnetic field leads to a Lorentz force
that excites bending vibrations of the wire at resonance conditions. We also demonstrate the possibility to
achieve more than one regime of stationary nonlinear vibrations and how to detect them via the associated dc
Josephson currents and we discuss possible applications of such a multistable nanoelectromechanical
dynamics.
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Coupling of electronic and mechanical degrees of free-
dom on the nanometer length scale is the basic phenomenon
behind the functionality of nanoelectromechanical �NEM�
systems. Such a coupling can be mediated either by electrical
charges or currents. Single-electron tunneling �SET� devices
with movable islands or gate electrodes employ Coulomb
forces to achieve capacitive1,2 and shuttle NEM coupling,3,4

where the latter involves both capacitive forces and charge
transfer. Devices containing current carrying parts, on the
other hand, will achieve NEM coupling through magnetic-
field-induced Lorentz forces. Focusing on the latter mecha-
nism, a simple estimate shows that for a gold nanowire sus-
pended over a few-micrometer-long trench, the mechanical
displacement due to typical currents of order 100 nA in mag-
netic fields of order 0.01 T can be as large as one nanometer.
Such displacements can crucially affect the performance of
mesoscopic devices.

In this paper we will explore a possible scenario for how
highly nonlinear nanoelectromechanical effects can arise if
the magnetic-field-induced electromotive force caused by the
mechanical motion of a conducting wire strongly perturbs
the flow of current through it. Devices which contain super-
conductors, with their known extreme sensitivity to external
electric fields, are the best candidates to achieve such strong
effects and superconducting quantum interference devices
�SQUIDs� that incorporate a nanomechanical resonator are
particularly interesting. Significant research has recently
been performed in this direction �see, e.g., Refs. 5–8� by
using a coupling between the SQUID dynamics and the reso-
nator’s mechanical vibrations due to the constraint set by the
flux quantization phenomenon. Here we will consider a dif-
ferent possibility for NEM coupling that occurs if the nano-
mechanical element is an integral part of the superconduct-

ing weak link. In this case the NEM vibrations directly affect
the Cooper pair tunneling and significantly modify the prop-
erties of the link. With a voltage-biased weak link it becomes
possible to pump nanomechanical vibrations in the Cooper
pair tunneling region. As we will show below the result is a
peculiar nonlinear NEM dynamics that affects both the su-
percurrent flow and the nanomechanical vibrations in differ-
ent ways.

The Hamiltonian describing the electronic subsystem in
the specific model system shown in Fig. 1 reads

Ĥ =� dx�̂†�x��Ĥ0 + Ĥ���̂�x� ,
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FIG. 1. �Color online� Sketch of system considered. A nanowire
is suspended between two superconducting electrodes separated by
a trench of length L. When the system is biased by a voltage V, the
Lorentz force caused by the coupling of the Josephson current and
a transverse magnetic field, H, induces wire vibrations described by
the coordinate u�x , t�. The nonlinear coupling leads to a multistabil-
ity of the system resulting in different dc Josephson current regimes
�see text�.
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Ĥ� = ��x���x cos ��t� + sgn�x��y sin ��t�� , �1�

where �†�x� ���x�� are two-component Nambu spinors and
�i are the Pauli matrices in Nambu space.15 The deflection of
the tube is given by u�x , t�=u�x�a�t�, where u�x� is the nor-
malized �dimensionless� profile of the fundamental bending
mode and a�t� determines its amplitude; other modes are less
important and will be ignored. The potential U�x� describes
the barrier between the nanowire and the bulk superconduct-
ing electrodes, where the gap parameter is ��x�=�0��2�x�
−L� with �0	10 meV. The phase difference across the
junction due to the bias voltage V is ��t�=2eVt /�.

A convenient gauge transformation �see Ref. 9 for a simi-
lar analysis� shifts the vector potential induced by the nano-
tube deflection from the kinetic part of the Hamiltonian to
the phase difference between the leads, so that ��t�→��t�
=��t�−a�t�4eH
0

L/2u�x�dx /�. In the adiabatic limit, �D�̇�t�
	�0, with D the transparency of the barriers, one can then
evaluate the fixed-phase ground-state energy of the elec-
tronic subsystem10 as E���=−�0�1−D sin2�� /2��1/2, and
find that the force exerted on the wire, F=−�E���a�� /�a, is
proportional to the Josephson current j= �2e /���E��� /��.
The resulting effective equation of motion for the nanowire
vibrating in its fundamental bending mode describes a forced
nonlinear oscillator with damping. In terms of the dimen-
sionless coordinate Y�t�= �4eLH /��a�t� one finds in the low
transparency limit, D	1, the result

Ÿ + 
̃Ẏ + Y = � sin��� , �2a�

�̇ = Ṽ − Ẏ . �2b�

Here, 
̃=
 /m� is a dimensionless damping coefficient,
while �=8eL2H2jc / �m��2� is the amplitude and �̇ the fre-

quency of the driving force with Ṽ=2 eV / ����, � is the
mechanical eigenfrequency, m is the mass of the nanowire,
and jc=D�0e / �2�� is the critical current and time t measured
in units of 1 /�. In Eq. �2a�, the driving force on the nano-
wire is naturally interpreted as the Lorentz force due to the
coupling between the Josephson current and the magnetic
field, which, due to the confined geometry of the charge car-
riers in the nanowire, is responsible for depositing energy
from the electronic to the mechanical subsystem. According
to Eq. �2b�, the phase difference � between the leads evolves
in time under the influence of both the bias voltage and the
electromotive force induced by the motion of the wire in the
static magnetic field.

Multiplying Eq. �2a� with Ẏ and averaging over time we
find �using the definition of the Josephson current above� that
in the stationary regime the dc through the system is

jdc =

�ȧ�t�2�

V
=


�2�2�Ẏ�t�2�
16e2L2H2V

, �3�

where �. . .� denotes time-averaged quantities.
To proceed with our analysis we consider the specific case

of a single-wall carbon nanotube wire of diameter 1 nm sus-
pended over a length L	1 
m. With jc	100 nA,11 one
then finds that �	3�10−3 in a magnetic field of H
	20 mT. Since 
̃=1 /Q, where the quality factor
Q	1000,12,13 both � and 
̃ may be considered small, � , 
̃
	1.

Numerical simulations of the nanowire dynamics using
equations of motion �2a� and �2b� with initial conditions

Y�0�= Ẏ�0�=0 show distinct resonance peaks in the vibration

amplitude at integer values of Ṽ. Figure 2, e.g., shows peaks

at Ṽ=1 and 2 �as well as a small peak at Ṽ=1 /2�, where the

onset of the Ṽ=2 peak depends on the ratio � / 
̃.16

For small vibration amplitudes, when one can expand

sin�Ṽt−Y� to linear order in Y, these results can readily be

attributed to a direct resonance at Ṽ=1 and a parametric

resonance at Ṽ=2. In this limit there is a resemblance be-
tween the resonances in our system and the familiar Fiske
effect in Josephson junctions coupled to an electromagnetic
resonator.14 However, as can be seen in Fig. 2�b� the oscilla-
tion amplitude is too large for the linear approximation to
hold if the driving force is large, ��
̃. As will be shown
below, the resonances in this nonlinear regime are signifi-
cantly different from those of the Fiske effect and demon-
strate a variety of unusual peculiarities which could be useful
for device applications.

To analyze the nonlinear regime in the vicinity of the
resonance peaks it is convenient to apply perturbation theory
and expand in the small parameters � and 
̃. With this in
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FIG. 2. �Color online� Time average of the rms nanowire deflec-
tion coordinate Y�t� from a numerical simulation of Eqs. �2a� and

�2b� as a function of bias voltage Ṽ for different force parameters �
�
̃=0.001�.
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mind, it is useful to write the dimensionless deflection coor-
dinate Y�t� of the nanowire as

Y�t� = 
In�t� sin� Ṽt

n
+

�n�t�
n

� , �4�

where the amplitude An�t��
In�t� and phase �n�t� vary

slowly in time; İn�t� , �̇n�t�� 
̃ , �	1. Substituting this an-
satz into Eqs. �2a� and �2b� and integrating over the fast
oscillations one gets two coupled equations for In�t� and
�n�t�,

İn = − 
̃In − 2�nJn�
In�sin �n, �5a�

�̇n = − � − 2�nJn��
In�cos �n. �5b�

Here, Jn are Bessel functions of order n, Jn��
In�
=dJn�
In� /dIn, and �= Ṽ−n. Stationary nonlinear oscillation
regimes can now be found by studying the stationary points
of Eqs. �5a� and �5b� in terms of the system parameters.

We start our analysis by considering the case of exact
resonance, �=0, for which Eqs. �5a� and �5b� guarantee that
a stationary solution given by In=0 always exists. However,
since Jn�x�	xn for small x, one immediately finds that this
solution is unstable for n=1 �resonance excitation�, while for
n=2 �parametric excitation� it is only unstable if ��2
̃. This
turns out to be the main difference between the two reso-
nance types; the corresponding finite-amplitude stationary
regimes are qualitatively very similar. In the following analy-
sis we will therefore focus on the parametric resonance at
n=2, and omit the index n on amplitudes, phases, and Bessel
functions.

From Eq. �5b� it is evident that exactly on resonance a
finite-amplitude stationary regime may be realized either by
fixing the phase, cos �=0, or the amplitude, J��A�=0. We
will refer to these different regimes as type I and type II.
From Eq. �5a� it follows that a type-I stationary point exists
for any ���I�2
̃. The oscillation amplitude is implicitly
given by the equation 
̃ /�=4J�AI� /AI

2, which always has a
solution in the relevant range of parameters �see Fig. 3�a��.17

Furthermore, type-II stationary points corresponding to
fixed-amplitude oscillations, AII=A0, where J��A0�=0, only
exists if ���II� 
̃A0

2 /4J�A0�. In this case there exists two
stationary points of equal amplitude, AII

�=A0, but different
phases, �II

�=3� /2�arccos��II /��.18

A stability analysis shows that the type-I stationary point
is stable if ���II, but unstable �a saddle point� for ���II.
The type-II stationary points, on the other hand, are always
stable if they exist, i.e., when ���II. This means that if one
increases �, by turning up the magnetic field, the nanotube
vibration amplitude will be zero �to an accuracy of order
� , 
̃� until �	�I. As � is varied from �I to �II the amplitude
increases from 0 to A0, where it saturates as we increase the
magnetic field further. This analysis, which also explains the
onset of the second peak in Fig. 2�b�, has been fully con-
firmed by numerically solving equations of motion �2a� and
�2b� for the vibration amplitude at varying values of �, as
shown in Fig. 3�b�. The inset shows the dc as a function of
magnetic field, where HII is defined from �II�HII

2 as above.

As the dc scales as jdc� �Ẏ�t�2� /H2 one finds that the current
initially grows with increasing magnetic field strength,
pumping energy into the nanoscale vibrations, but falls off as
1 /H2 once H�HII and the vibration amplitude has saturated
at A0.

Moving off the resonance, � becomes nonzero and if �
��II the degeneracy of the amplitudes AII

� at the type-II sta-
tionary points is lifted. If ��0 the amplitude AII

+��� is larger
and AII

−��� smaller than the on-resonance value A0, as shown
in Fig. 4, while if ��0 the opposite is true.

As the degeneracy is lifted, the stable type-II stationary
point that moves to higher amplitudes merges with the type-I
saddle point and disappears at some critical value ��c. Con-
sequently, in the interval �−�c ,�c� there are two different
stable nonlinear regimes ��� characterized by different
nanotube oscillation amplitudes and as a consequence by dif-
ferent dc through the system. A detailed analysis shows that
if �−�II	�II the width 2�c of this window of bistability is
���−�II�3/2, while the maximum difference in amplitudes
�AII

+���c�−AII
−���c�� is ���−�II�.

The stationary point that describes the system in a particu-
lar situation depends on the initial conditions. If initially A
�0, the system always moves to the stationary point with
lowest amplitude as the parametric resonance develops, i.e.,
AII

− if ��0 and AII
+ if ��0. However, if the system starts

from inside the separatrix defining the higher than on-
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FIG. 3. �Color online� �a� Plots for solution of Eq. �5a� with

İn=0 for �n=3� /2 �type-I regime� and �=0.005 �red solid�, �
=0.003 �black dashed�, and �=0.001 �green dashed-dotted�. Cross-
ings with the straight line correspond to stationary points. �b� Nu-
merical solution on resonance of Eqs. �2a� and �2b� for the time-
averaged rms nanowire deflection coordinate as a function of �. The
inset shows corresponding plot for dc as a function of magnetic
field. �=0 and 
̃=0.001 throughout.
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resonance stationary point �see Fig. 4�, it will achieve a sta-
tionary amplitude that is larger than on resonance. Alterna-
tively, the system can reach this point if the voltage is slowly
changed from resonance, as the system will follow the tra-
jectory of the stationary point at which it is defined exactly
on resonance. This represents a unique sensitivity in our sys-
tem to small changes in the applied bias voltage. Since the dc
through the system depends on the vibration amplitude, jdc
�A2, it follows that we can predict a non-single-valued I-V
curve close to resonance. The result is a hysteretic behavior,
the origin of which lies in the multistability of the pumped
nanomechanical vibrations. This means that the magnitude of
the dc Josephson current in our device is sensitive to the
pumping history. Such memory effects may be employed for
different device applications where the sensitivity of the na-
nomechanical initial conditions and the possibility to switch
the system between two stable regimes of vibration can be
employed for both sensing and memory devices. As an ex-
ample we discuss briefly below how a memory device could
work.

A scheme for the electrical manipulation of our supercon-
ducting nanovibrator is presented in Fig. 5, where the start-
ing position 1 corresponds to a bias voltage which is slightly
off resonance and a nanowire that oscillates with an ampli-
tude AII

−���0� smaller than on resonance �see Fig. 4�b��.
Now consider the effect of the voltage pulses �i� and �ii�
shown in the inset. Pulse �i� moves the system along trajec-
tory �i� to where the vibration amplitude AII

−���0� is larger
than on resonance. However, at �=−�c this asymptotically
stable point merges with the third stationary point �saddle�

and becomes unstable. The system therefore jumps to the
second asymptotically stable point, where the vibration am-
plitude AII

+���0� is smaller than on resonance. When the
voltage is increased again, the system will move to position
2, where the vibration amplitude AII

+���0� and hence the dc
is larger than at position 1. One concludes that pulse �i�
writes one bit of information, which is stored as a measur-
ably larger dc. Pulse �ii�, on the other hand, moves the initial
stability point back and forth along trajectory �ii� and returns
it to the initial position 1. For the parameters considered
here, i.e., a resonance frequency of the order 1 GHz, we find
that the difference in the current between points 1 and 2 is a
few nA. Also, the window of bistability 2�c is about 50 nV

with the second resonance peak Ṽ=2 corresponding to an
absolute bias voltage of V	5 
V. The corresponding mid-
point amplitude of vibration of the nanowire is 	25 nm.

It is interesting to again compare the phenomena dis-
cussed in this paper with the Fiske effect.14 Repeating our
analysis we find the low-amplitude behavior to be similar for
the two systems. However, we predict that a dynamical mul-
tistability will appear at a certain value, �II, of the driving
Lorentz force. This does not occur in the Fiske effect, where
the vibration amplitude exactly on resonance follows the
stable solution corresponding to cos �=0 in Eq. �5b� for all
driving forces �.

To conclude we have shown that for a nanowire sus-
pended between two voltage-biased superconducting elec-
trodes in a transverse magnetic field, pronounced resonance
phenomena can be found at discrete values of the driving
voltage. Our analysis shows that the behavior of this system
is governed by an effective equation of motion whose solu-
tion gives the amplitude of the nanowire oscillations and the
dc Josephson current as a function of system parameters.
Most importantly, it was shown that for realistic experimen-
tal parameters the system can be driven into a multistable
regime by varying the magnetic-field strength. The possibil-
ity to pump energy into the mechanical vibrations of a sus-
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FIG. 4. �Color online� Phase space diagrams in the type-II re-
gime with �=0.01 and 
̃=0.001 showing �a� two asymptotically
stable points with vibration amplitude A0	3 �dashed line� and �b�
their shifts from A0 off resonance.
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FIG. 5. �Color online� Diagram illustrating how small voltage
pulses switch the dc Josephson current. The two pulses in the inset
have different effects. After pulse �ii� �blue� the current is the same
as before, while pulse �i� �red� switches the current by a measurable
amount �from point 1 to 2� thereby storing one bit of retrievable
information in the device ��=0.05, 
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pended nanowire and the ensuing dynamical multistability of
the vibration amplitude and dc make this superconducting
nanoelectromechanical device a unique system, where the
sensitivity to initial conditions and switching between two

stable regimes can be probed experimentally.
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